If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+1=3
We move all terms to the left:
20x^2+1-(3)=0
We add all the numbers together, and all the variables
20x^2-2=0
a = 20; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·20·(-2)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*20}=\frac{0-4\sqrt{10}}{40} =-\frac{4\sqrt{10}}{40} =-\frac{\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*20}=\frac{0+4\sqrt{10}}{40} =\frac{4\sqrt{10}}{40} =\frac{\sqrt{10}}{10} $
| 19x-17=18-2x | | (3x+50)(6x-10)=0 | | 2/3y-5/4=-8/5 | | 12-8n=4n-12 | | X+13+3x+1=90 | | 2(x)+2(x*5)=288 | | 61/4(x−2/3)=93/8 | | a+88=101 | | f=(9/5)66+32 | | 1-5=3n=3 | | 6+x3=1 | | n/12=10+1 | | 780+x=1280 | | 3x-3+32=5x-1+8 | | (10x=100)=(30x=0) | | -8q=24 | | 12x-60=6x+50 | | 1-46=-3n+3 | | 1/3(6d+3)=5 | | 1.5x+4.5x+3x=20 | | (60)=10/x | | 9(x/3)=6x+3 | | 47.50=3/2x | | 3/4w-1=8 | | 8x+60=4x-16 | | 100x=212 | | -w+274=211 | | 10b+13=0 | | 884=d−-335 | | 5x^2=4x+12 | | 7+n/3=4 | | 14x-35=9x+15 |